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3GRAPH EXPLORATION

Efficiently extracting knowledge from graph data 
even if we do not know exactly what we are looking for

Graph Exploration: From Users to Large Graphs. 
CIKM 2016, SIGMOD 2017, KDD 2018
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3,27 × 109

base pairs

Graph Exploration in Biology - Complex Graphs

http://jcs.biologists.org/content/joces/118/21/4947/F3.large.jpg



Graph Exploration in Biology - Status Quo

MATCH (p1:Phenotype)-[:HAS]-(a1:Association)-[:HAS]-(snp:Snp)-[:HAS]-(a2:Association)-[:HAS]-(p2:Phenotype)

WHERE p1.name = 'foo1‘ AND p2.name = 'foo2p‘ AND a1.p < 0.01 AND a2.p < 0.01

WITH DISTINCT snpORDER BY snp.sidRETURN collect(snp.sid)

7

MATCH 

(p1:Phenotype)-[:HAS]-(a1:Association)-[:HAS]-(snp:Snp)-[:HAS]-(a2:Association)-[:HAS]-(p2:Phenotype

)
WHERE p1.name = 'foo1'

AND p2.name = ‘foo2'

AND a1.p < 0.01 AND a2.p < 0.01

WITH DISTINCT snp

MATCH (snp)-[:IN]-(pw:PositionWindow)<-[:IN]-(l:Locus)--(g:Gene)

WHERE l.feature= 'gene'

RETURN collect(DISTINCT g.name)

MATCH 
(p1:Phenotype)-[:HAS]-(a1:Association)-[:HAS]-(snp:Snp)-[:HAS]-(a2:Association)-[:HAS]-(p2:Phenotype)
WHEREp1.name = 'foo1'
ANDp2.name = ‘foo2'
ANDa1.p < 0.01 AND a2.p < 0.01
WITH DISTINCT snp
MATCH(snp)-[:IN]-(pw:PositionWindow)<-[:IN]-(l:Locus)--(g:Gene)
WHERE l.feature= 'gene'
WITH DISTINCT g ORDER BY g.name
MATCH(g)-[:CODES]-(:Transcript)-[:CODES]-(p:Protein)-[:MEMBER]-(go:Goterm)
WHERE go.namespace= 'biological_process'
WITH DISTINCT go,p
RETURN go.name, count(p) ORDER BY count(p)DESC
LIMIT 10

MATCH 
(p1:Phenotype)-[:HAS]-(a1:Association)-[:HAS]-(snp:Snp)-[:HAS]-(a2:Association)-[:HAS]-(p2:Phenotype)

WHERE p1.name = 'foo1'AND p2.name = ‘foo2'AND a1.p < 0.01 AND a2.p < 0.01
WITH DISTINCT snpMATCH (snp)-[:IN]-(pw:PositionWindow)<-[:IN]-(l:Locus)--(g:Gene)

WHERE l.feature= 'gene'WITH DISTINCT gORDER BY g.name
MATCH (g)-[:CODES]-(:Transcript)-[:IS]-(ps:Probeset)-[:SIG]-(s:Sample)

WHERE s.name= 'mustafavi'
RETURN DISTINCT g.name



Can we do better?
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Problem
● Given two node sets:

How similar are they in my understanding?

● Example
→ Set of movies I like
→ Set of movies I don’t know
→ Will I like the movies I don’t know?
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What is a Knowledge Graph?

● (directed) graph G : ⟨V, E, φ, ψ⟩, where 
○ V is a set of nodes,
○ E ⊆ V × V is a set of edges,
○ φ : V → LV is an edge labeling function 

and
○ ψ : E → LE is a node labeling function

We refer to the elements of LV and LE as node 
labels and edge labels
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What are Meta-Paths? 

Graph Path

Graph Schema Meta-Path

A meta-path for a path ⟨n1 , ..., nt ⟩, ni ∈ V , 1 ≤ i ≤ t is a sequence 
P : ⟨φ(n1 ),ψ (n1 , n2 ), ..., ψ (nt−1 , nt ), φ(nt)⟩ that alternates node- and 
edge-types along the path. 
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Motivating Example
Q: How famous is Diane Kruger in America?

MATCH(n:Person)
WHERE n.name = “Diane Kruger”
RETURN n

MATCH(m:Movie)
WHERE m.location = “America”
RETURN m

Diane 
Kruger

As 
Good 
As It 
Gets

Stand 
By MeTop 

Gun

Pulp 
Fiction A Few 

Good 
Men

The 
Matrix

Up
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How similar are they?
● Similarity depends on

○ expert knowledge
○ connections among nodes
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Individualized 
explorationExtract ratingsCompute Meta-Paths

What does the System do and how?
Overview

✓✗
◎

Learn representation 
for meta-paths

Calculate 
similarity
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Approximate Meta-Paths
Problem: How to compute all meta-paths fast?
Approx. Solution: Mine meta-paths using the graph’s schema and learn classifier 
on real meta-paths

Meta-Paths Computation

Compute schema
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Learning a Meta-Path Embedding
Problem: Vector representation required for active 
learning and preference prediction.

Meta-Paths Embedding

?

(3 5 1)T
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Learning a Meta-Path Embedding
Problem: Vector representation required for active 
learning and preference prediction.

Solution: Embed meta-paths
→ Similar meta-paths should have similar vectors.

Our method: Transfer text embedding method to 
meta-paths.

Meta-Paths Embedding

(3 5 1)T
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Learn the Domain Value of all Meta-Paths

- Problem: Users don’t want to rate all meta-paths
→ too many
→ time-consuming
→ tedious and boring

- Solution: Label only a few, but very informative paths

Active Learning

✓✗
◎
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Use Learned Preferences for Graph Exploration 
Result Explanation

Icons made by Eucalyp from www.flaticon.com is 
licensed by CC 3.0 BY

Graph (with 
meta-paths)

Domain Knowledge

What is 
important in 
the graph?

Personalized Exploration 
Tool

Similarity Measure

Related Nodes

Stats
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Personalized Node Embedding
Result Explanation

Transform Nodes to 
Vectors 

(Graph-Embedding)

Adapt Vectors Using 
Domain-Knowledge

Personalized Vector 
Space

precomputed
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Personalized Exploration Tool 
Applications

What nodes 
are close to 

my selection?How close are 
my sets?

Find clusters!
What are 
outliers?Personalized Vector 

Space
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System Architecture - How does it work with Neo4j?

Neo4j Graph Database

Neo4j Graph Algorithm Procedures
Containing Meta-Paths Computation

Python Backend Server

ReactJS Frontend

Meta-Path 
Embedding Active Learning Explanation

Node selection Meta-Path 
ordering

Result 
visualization
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● Easy to get your code running in neo4j.
● Neo4j-graph-algorithms: efficiency vs convenience.
● Sometimes no stack-trace when an error occurs.
● Great support and community. Always available.
● Cypher: Easy to begin with, hard to master.

(hpi)-[:LIKES]->(neo4j)

What about neo4j?
Meta-Paths Computation
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Trending: #tweetyourthesis
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Trending: #tweetyourthesis
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